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Elemental carbon has recently been shown to form molecular polyhedral allotropes known
as fullerenes in addition to the familiar graphite and diamond known since antiquity. Such
fullerenes contain polyhedral carbon cages in which all vertices have degree 3 and all faces
are either pentagons or hexagons. All known fullerenes are found to satisfy the isolated
pentagon rule (IPR) in which all pentagonal faces are completely surrounded by hexagons
so that no two pentagonal faces share an edge. The smallest fullerene structures satisfy-
ing the IPR are the known truncated icosahedral C60 of Ih symmetry and ellipsoidal C70

of D5h symmetry. The multiple IPR isomers of families of larger fullerenes such as C76,
C78, C82 and C84 can be classified into families related by the so-called pyracylene trans-
formation based on the motion of two carbon atoms in a pyracylene unit containing two
linked pentagons separated by two hexagons. Larger fullerenes with 3ν vertices can be
generated from smaller fullerenes with ν vertices through a so-called leapfrog transforma-
tion consisting of omnicapping followed by dualization. The energy levels of the bonding
molecular orbitals of fullerenes having icosahedral symmetry and 60n2 carbon atoms can
be approximated by spherical harmonics. If fullerenes are regarded as constructed from car-
bon networks of positive curvature, the corresponding carbon allotropes constructed from
carbon networks of negative curvature are the polymeric schwarzites. The negative cur-
vature in schwarzites is introduced through heptagons or octagons of carbon atoms and
the schwarzites are constructed by placing such carbon networks on minimal surfaces with
negative Gaussian curvature, particularly the so-called P and D surfaces with local cubic
symmetry. The smallest unit cell of a viable schwarzite structure having only hexagons and
heptagons contains 168 carbon atoms and is constructed by applying a leapfrog transforma-
tion to a genus 3 figure containing 24 heptagons and 56 vertices described by the German
mathematician Klein in the 19th century analogous to the construction of the C60 fullerene
truncated icosahedron by applying a leapfrog transformation to the regular dodecahedron.
Although this C168 schwarzite unit cell has local Oh point group symmetry based on the
cubic lattice of the D or P surface, its larger permutational symmetry group is the PSL(2,7)
group of order 168 analogous to the icosahedral pure rotation group, I , of order 60 of the
C60 fullerene considered as the isomorphous PSL(2,5) group. The schwarzites, which are
still unknown experimentally, are predicted to be unusually low density forms of elemental
carbon because of the pores generated by the infinite periodicity in three dimensions of the
underlying minimal surfaces.

 J.C. Baltzer AG, Science Publishers
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1. Introduction

Two allotropes of elemental carbon have been recognized since antiquity, namely,
diamond and graphite. The structure of diamond [7] (figure 1(a)) consists of an infinite
three-dimensional lattice of sp3 (tetrahedral) carbon atoms, each of which is bonded
to four other carbon atoms to form interlocking six-membered C6 rings similar to
those in cyclohexane or adamantane with C–C distances of 1.514 Å. The structure of
graphite [55,59] (figure 1(b)) consists of planar layers of hexagons of sp2 (trigonal)
carbon atoms with a separation of 3.35 Å between layers. The strong chemical bonding
of the diamond structure in all three directions is responsible for the extreme hardness
of diamond whereas the relatively slight forces between the hexagonal layers in the
graphite structure are consistent with its softness and lubricity.

Until the 1980’s diamond and graphite were the only allotropes of carbon which
had been isolated and characterized. However, during the 1980’s new allotropes of
carbon were discovered exhibiting finite molecular cage structures rather than the in-
finite polymeric structures found in diamond and graphite. The first such molecular
carbon allotrope was C60, which was postulated and then shown to have a truncated
icosahedral structure resembling a soccer ball with 60 vertices, 90 edges, 12 pen-

(a)

(b)

Figure 1. (a) A portion of the diamond lattice; (b) A portion of a planar hexagonal sheet of the graphite
structure.
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tagonal faces, 20 hexagonal faces and icosahedral symmetry (Ih) [48]. The carbon
allotrope C60 thus provided the first example of a “hollow-shell graphite molecule” of
a type first suggested by Jones in 1966 [32]. The possibility of an actual truncated
icosahedral C60 molecule was first suggested in 1970 by Osawa in publications which
were largely ignored, at least partially, because they were written in Japanese [58,70].
Subsequent publications in 1973 [5] by Bochvar and Gal’pern and in 1981 by David-
son [11] provided Hückel-type calculations of the molecular orbital energy levels of
truncated icosahedral C60 by various methods even though there was no experimental
evidence at that time for the existence of C60. Initial experimental evidence for C60

based on the prevalence of an unusually strong m/e 720 peak in the mass spectra of
soots obtained by the laser vaporization of graphite was reported by Kroto et al. [49]
in 1985. Macroscopic quantities of C60 were first isolated by Krätschmer et al. [46]
in 1990 from the soot obtained by arc-processed graphite. The truncated icosahedral
structure of C60 was observed directly by Hawkins et al. [26] in 1991 in a single-crystal
X-ray diffraction study of its adduct C60(OsO4)(t-BuC5H4N). The introduction of the
OsO4 substituent facilitated the structural determination of C60 by X-ray diffraction

Figure 2. The fullerene polyhedra for isomers of Cn (n = 60, 70, 76, 78, 82 and 84) that have been
isolated and characterized by X-ray diffraction and/or 13C NMR. Examples of the five different types of

carbon atoms in C70 are labelled A–E.
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since it eliminated crystallographic disorder by reduction of the icosahedral symmetry
to a lower symmetry.

The discovery of C60 was followed almost immediately by the discovery of
other molecular Cn allotropes (e.g., n = 70, 76, 78, 80, 82, 84, 86, 88, 90 and 96)
exhibiting other polyhedral cage structures albeit with much lower symmetry [13].
Figure 2 depicts the structures of some of these molecular carbon cages, which are
generally called fullerenes in view of their resemblance to the architectural creations of
R. Buckminster Fuller. More precisely, a fullerene is defined as a polyhedral carbon
cage in which all vertices have degree 3 and all faces are either pentagons or hexagons.
In this context, the degree of a vertex is defined as the number of edges meeting at that
vertex. The fullerene cages are all found to have exactly 12 pentagonal faces, no pair of
which share any edges. Various aspects of the development of fullerene chemistry are
summarized in a number of review articles [47,48] and books [4,9]. The renaissance of
elemental carbon chemistry arising from the discovery of fullerenes is raising new and
interesting mathematical questions relating to their topologies and symmetries. Such
mathematical questions are providing new opportunities for mathematical chemists,
some of which are summarized in this article.

2. Fullerenes: molecular carbon cages

2.1. The topology of fullerene polyhedra

Schmalz, Klein and their collaborators [51,60] have considered possible criteria
for polyhedra forming stable carbon cages having no external groups and hence corre-
sponding to allotropes of elemental carbon. The cages are considered to be constructed
by bending planar carbon networks upon themselves in two directions. The resulting
carbon polyhedra thus have the following features:

(1) A three-valent σ-bonded surface corresponding to sp2 carbon atoms with an extra
p orbital to participate in delocalization leading to resonance stabilization.

(2) A carbon cage topologically homeomorphic to a sphere, i.e., no “doughnut holes”
as in a torus.

(3) All carbon rings (i.e., polyhedral faces) are pentagons and hexagons to minimize
ring strain and non-aromatic rings.

Some structural motifs in such fullerene polyhedra are depicted in figure 3. These
structural motifs are given names corresponding to the trivial name of the simplest
polycyclic hydrocarbon containing the structural motif in question.

Let us now consider some topological aspects of possible fullerene structures.
The restriction to three σ bonds from each carbon vertex in the polyhedral surface
relates the number ν of vertices to the number e of edges by the following equation:

2e = 3ν. (1)
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Figure 3. Building blocks for fullerene polyhedra.

Furthermore, the numbers of vertices (ν), edges (e), and faces (f ) in a polyhedron
homeomorphic to a sphere must satisfy Euler’s relationship

ν − e+ f = 2. (2)

Combining equations (1) and (2) gives the following two equations in which fn is the
number of n-sided faces (or rings):∑

n

nfn = 2e, (3)

ν +
∑
n

fn = e+ 2. (4)

Eliminating e and ν from equations (1)–(4) gives a required balance between smaller
and larger rings in a carbon cage described by the following equation:

3f3 + 2f4 + f5 −
∑
n

(n− 6)fn = 12. (5)
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Equation (5) expresses the fact that 12 “units of curvature” are needed to close a
graphite sheet into a cage homeomorphic to a sphere. Furthermore, equation (5)
shows that these units of curvature can be made up with minimum deviation from the
hexagonal rings of graphite by using exactly 12 pentagons in accord with criterion 3
above. In this connection set fn = 0 except for n = 5, 6 and 7 to give

f5 − f7 = 12 (6)

and

f6 + 2f7 =
1
2
ν − 10. (7)

Setting f6 and f7 to zero in equations (6) and (7) leads to the regular dodecahedron
which has the 12 pentagonal faces implied by equation (6) and the 20 vertices implied
by equation (7). Note that since f6 does not appear in equation (6), fullerene polyhedra
with only pentagonal and hexagonal faces, all vertices of degree 3, and 12 pentago-
nal faces will satisfy equation (6) with any number of hexagonal faces. Motzkin
and Grünbaum [24] have proven the following theorem relating to possible fullerenes
satisfying these topological criteria:

Motzkin–Grünbaum theorem. For every even vertex count with ν > 24 there exists
at least one fullerene containing only pentagonal and hexagonal faces (and all ver-
tices of degree 3) and the smallest fullerene has a regular dodecahedral structure with
ν = 20.

2.2. The isolated pentagon rule

These elementary topological concepts used alone predict a large number of
possible fullerenes including fullerenes as small as C20. Additional concepts must be
introduced to select a limited number of preferred fullerene structures from this large
number of possible fullerene structures and to rationalize the observation of C60 rather
than C20 as the smallest isolable fullerene. In this connection an important additional
concept for determining fullerene structures is the so-called isolated pentagon rule
(IPR) [60] which avoids the destabilizing 8-membered pentalene-type cycle around
any two pentagonal faces sharing an edge as depicted in figure 3. Such pentalene units
are destabilizing for the following reasons:

(1) The Hückel criteria for aromaticity favors cycles containing 4k + 2 rather than
4k π-electrons, where k is an integer. Pentalene units have 8 π-electrons which is
an unstable “4k-type” number.

(2) Topological and geometrical considerations suggest that hexagonal faces favor flat
surfaces (e.g., graphite) whereas pentagonal faces form curved surfaces (e.g., the
regular dodecahedron). Thus pentagonal faces lead to positive curvature whereas
hexagonal faces favor zero curvature. Fusing two pentagonal faces by sharing an
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edge concentrates much of the curvature of the polyhedral surface into a limited
region leading to unnecessary strain in the corresponding fullerene.

Klein [42,43] has proven the following theorem concerning the IPR:

IPR fullerene theorem. For every even vertex count ν > 70 there exists at least
one fullerene satisfying the IPR and the smallest fullerene satisfying the IPR is the
truncated icosahedron with ν = 60.

Experimental observations are in excellent agreement with this theorem since
the smallest isolable fullerene has been found to be C60 and the next higher isolable
fullerene is C70.

The IPR eliminates most otherwise possible fullerene structures leaving only sin-
gle structures for C60, C70 and C72, two structures for C76, and excludes all other
possible structures for Cn fullerenes where n 6 70 (table 1). However, for larger
fullerenes Cn (n > 76) the number of possible structures obeying the IPR can still be
large. For example, 24 possible fullerene structures for C84 satisfy the IPR indicating
the need for additional concepts to classify such fullerene structures. In this connec-
tion fullerenes can be organized into families related by the so-called pyracylene or
Stone–Wales transformation based on motion of two carbon atoms in a pyracylene unit
(figure 4) [14,19,67]. Fullerenes satisfying the IPR are assumed to undergo facile in-

Table 1
Properties of fullerene polyhedra.a

Fullerene Number of Number of Number of Symmetries Number of
pentagonal hexagonal IPR of IPR different

faces faces structuresb isomers verticesc

C60 12 20 1 Ih 1
C70 12 25 1 D5h 5
C72 12 26 1 D6h 4
C74 12 27 1 D3h 9
C76 12 28 2 T d

d , D2 19 (D2)
C78 12 29 5 (1 + 4) D3h (2), D3, C2ν (2) 13 (D3), 21 or 22 (C2ν)
C80 12 30 7 Id

h, D5d, D5h, C2ν (2), 20 (D2)
D3, D2

C82 12 31 9 C2 (3), Cs (3), C3ν (2), C2ν 41 (C2)
C84 12 32 24 (3 + 21) C1 to Td 11 (D2d), 21 (D2)
C90 12 35 46 C1 (18), C2 (14), C2ν (6)

and others

a See figure 2 for some fullerene polyhedra that have been observed experimentally; fullerenes not
observed experimentally are listed in bold.

b The partitioning of the IPR structures into families related by pyracylene transformations (figure 4)
is given in parentheses.

c For fullerenes Cn (n > 76) only the numbers of different vertices for fullerenes observed experimen-
tally are given.

d The Td structure for C76 and the Ih structure for C80 are open shell structures.
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Figure 4. The pyracylene (Stone–Wales) transformation.

terconversion by the pyracylene transformation under the conditions of their synthesis
in graphite arcs so that the number of isolable Cn fullerenes reflects the number of
closed families of interconverting isomers.

Consider a fullerene structure consisting of a cage of sp2 hybridized carbon atoms
with different arrangements of the hexagonal and pentagonal rings. The pyracylene
transformation for interchanging the positions of the hexagons and pentagons is illus-
trated in figure 4. The concerted shift of σ-bonds considered as a pericyclic chemical
process leads to a four-electron Hückel transition state [21]. Although this process is
thermally forbidden, this structural transformation can be formally applied to any of the
bonds between two pentagons to generate many different species. Of particular signif-
icance in understanding the higher fullerenes are series of pyracylene transformations
interconverting IPR isomers without any intermediates violating the IPR.

2.3. The leapfrog transformation

Another process for generating larger fullerenes from smaller fullerenes is the
so-called leapfrog transformation [20]. The leapfrog transformation consists of omn-
icapping followed by dualization and generates a fullerene cage of 3n carbon atoms
from any fullerene cage of n carbon atoms. In the omnicapping stage, each face of the
original polyhedron is capped with an extra atom to make a local pyramid so that the
resulting omnicapped polyhedron, which necessarily is a deltahedron, can be regarded
as a “compound” of the original polyhedron and its dual where the dual polyhedron
is generated from the apices of the local pyramids. The processes of omnicapping
and dualization making up the leapfrog transformation both preserve the symmetry
of the original polyhedron. Furthermore, applying the leapfrog transformation to any
fullerene leads to a fullerene with a stable closed-shell electronic structure. The ef-
fects of applying a leapfrog transformation to a hexagon, a pentagon, a heptagon,
a vertex, and an edge of a carbon network are depicted in figure 5. Application of a
leapfrog transformation to a regular dodecahedron (i.e., the hypothetical C20) to give
the truncated icosahedron of the C60 fullerene through an omnicapped dodecahedron
intermediate is depicted in figure 6. Since fullerene structures are feasible for any
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Figure 5. A schematic description of the effect of the leapfrog transformation on a hexagonal face,
a pentagonal face, a heptagonal face, a vertex, and an edge. The second column shows elements of
the intermediate omnicapped deltahedron and the third column their counterparts in the final leapfrog

polyhedron. Double bonds in a carbon structure are shown as bold lines.

Cn cage where n = 20 + 2k (k 6= 1), stable fullerenes generated by the leapfrog
transformation occur with 60 + 6k (k 6= 1) vertices.

The rules associated with leapfrog transformations can be proven formally using
bounding theorems for matrix eigenvalues [54]. However, the plausibility of such
rules can be seen by noting that a double bond can be associated with every edge of
the leapfrog arising from its parent and single bonds with the other edges (note the
bold edges in figure 5). This arrangements of single and double bonds results in the
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maximum for a Cn fullerene of n/3 benzenoid hexagons, each containing three double
bonds [18].

2.4. Fullerenes of icosahedral symmetry and their energy levels

Fullerene polyhedra of the highest possible symmetry, namely icosahedral, are
of particular interest as exemplified by C60. Each fullerene polyhedron of icosahedral
symmetry uniquely corresponds to a pair of integers h, k such that 0 < h > k > 0
with the number of vertices T being defined by the following equation:

T = 20
(
h2 + hk + k2). (8)

A fullerene satisfying equation (8) has full Ih icosahedral rotational and reflection
symmetry if k = 0 or h = k > 0, but only the chiral I pure rotational symmetry if
h > k 6= 0.

The simplest polyhedron satisfying equation (8) is the regular dodecahedron for
which h = 1 and k = 0 so that T = 20. The truncated icosahedron found in
C60 (figure 2) satisfies equation (8) for h = k = 1 and is derived from the regular
dodecahedron by a single application of the leapfrog transformation as depicted in
figure 6. In any fullerene polyhedron with icosahedral symmetry, the centers of the 12
pentagonal faces form a large icosahedron.

Polyhedra of icosahedral symmetry having only pentagonal and hexagonal faces
in which all vertices have degree 3 and thus satisfying equation (8) are called Goldberg
polyhedra [22]. Fowler [17] has shown that the Goldberg polyhedra for carbon clusters
follow an electron-counting rule analogous to the famous Hückel 4k+2 (k integer) rule
for planar polygonal hydrocarbons. Thus when h− k is divisible by three the carbon
cluster has a multiple of 60 atoms and has a closed shell electronic configuration;
otherwise the carbon cluster has 60m + 20 atoms (m integer) and has an open shell
electronic configuration. The smallest example of an open-shell IPR fullerene with
icosahedral symmetry is the Ih C80 isomer listed in table 1 which follows the 60m+20

Figure 6. Application of the leapfrog transformation to the regular dodecahedron to give the truncated
icosahedron of C60 through an omnicapped dodecahedron intermediate.
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rule, where m = 1. If a particular value of T satisfies equation (8), then so do 3T ,
9T , 27T , etc. This follows from equation (8) since if equation (8) is satisfied then

3T = H2 +HK +K2, (9)

where H = h + 2k and K = h − k. These considerations predict stable closed-shell
icosahedral fullerenes with 60, 180, 240, 420, 540, . . . carbon atoms.

The molecular orbitals of the simplest fullerene of icosahedral symmetry, namely,
C60, are of interest because of their relationship to the superconductivity of compounds
obtained by reduction of C60 with alkali metals [25]. For example, the A3C60 phases
(A = alkali metal) have been found [62] to exhibit superconductivity with Tc’s around
20 K (e.g., 18 K for K3C60). These superconducting materials retain the solid state C60

face-centered cubic structure with slightly modified lattice constants and thus may
be regarded as three-dimensional materials. More extensive reduction of C60 with
alkali metals lead to insulating orthorhombic A4C60 and insulating body-centered cubic
A6C60 phases.

The origin of the superconductivity in these reduced C60 materials can be under-
stood by consideration of the electronic structure of C60 [15]. The bonding character
in the C60 cage may be regarded as predominantly sp2 with a small amount of sp3

character arising from the nonzero curvature of the C60 surface. The approximation of
the truncated icosahedron of C60 by a sphere suggests labeling of its electronic states
in terms of spherical harmonics, in which the σ and π electrons correspond to different
radial quantum numbers [10].

These spherical harmonics used to describe the molecular orbital energy levels
of fullerenes of icosahedral symmetry are mathematically analogous to the functions
used to describe atomic orbitals and thus arise from solution of the following well-
known second-order differential equation in which the potential energy V is spherically
symmetric:

∂2Ψ
∂x2 +

∂2Ψ
∂y2 +

∂2Ψ
∂z2 +

8π2m

h2 (E − V )Ψ = ∇2Ψ +
8π2m

h2 (E − V )Ψ = 0. (10)

The resulting wave functions, Ψ, may be factored into the product

Ψ(r, θ,φ) = R(r)Θ(θ)Φ(φ), (11)

in which the factors R, Θ and Φ are functions solely of r, θ and φ, respectively, which
are related to the Cartesian coordinates x, y and z by the following equations:

x = r sin θ cos φ, (12a)

y = r sin θ sin φ, (12b)

z = r cos θ. (12c)

Since the value of the radial component R(r) of Ψ is completely independent of the
angular coordinates θ and φ, it is independent of direction (i.e., isotropic) and therefore
remains unaltered by any symmetry operations. For this reason all of the symmetry
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properties of a spherical harmonic Ψ are contained in its angular component Θ(θ)Φ(φ)
which is defined by the scalar spherical harmonics Ylm(θ,φ), i.e.,

Θ(θ)Φ(φ) = Ylm(θ,φ). (13)

Each of the three factors of Ψ (equation (11)) generates a quantum number.
Thus the factors R(r), Θ(θ) and Φ(φ) generate the quantum numbers N , L and M ,
respectively. The principal quantum number N , derived from the radial component
R(r), relates to the distance from the center of the sphere (i.e., the nucleus in the case
of atomic orbitals). The azimuthal quantum number L, derived from the factor Θ(θ)
in equation (11), relates to the number of nodes in the angular component Θ(θ)Φ(φ),
where a node is a plane corresponding to a zero value of Θ(θ)Φ(φ) or Ψ, i.e., where the
sign of Θ(θ)Φ(φ) changes from positive to negative. Molecular orbitals of spherical
molecules where L = 0, 1, 2, 3, 4, 5, etc. are conventionally designated as S, P, D, F, G,
H, etc. orbitals, respectively, by analogy with standard designations of atomic orbitals
and their quantum numbers but using capital letters. For a given value of the azimuthal
quantum number L, the magnetic quantum number M , derived from the factor Φ(φ)
in equation (11), indicates the tilt of the plane of orbital motion with respect to some
reference direction [34] (typically, the z-axis) and may take on all 2L + 1 different
values from +L to −L. There are therefore necessarily 2L + 1 distinct orthogonal
orbitals for a given value of L corresponding to 1, 3, 5, 7, 9 and 11 distinct S, P, D,
F, G and H orbitals, respectively. Thus a set of molecular orbital energy parameters
satisfactorily approximated by spherical harmonics must be partitioned into relatively
closely spaced groups of 1, 3, 5, 7, 9, etc. molecular orbitals starting with the molecular
orbital of lowest energy corresponding to the highest eigenvalue of the corresponding
graph.

The use of spherical harmonics in a Hückel theory based approach to describe
the molecular orbitals of C60 is closely related to the tensor surface harmonic methods
of Stone [63–66], which have been applied to deltahedral boranes by using spheres to
approximate borane deltahedra. The bonding σ-states of C60 relate to edge-localized
σ-bonds along the 90 edges of the truncated icosahedron and reside well below the
highest occupied molecular orbital (HOMO) of C60, which is composed of orbitals
having primarily π character. The resulting molecular orbital energy levels of C60

based on this spherical harmonic analogy using the terminology of Stone [63–66] as
well as standard molecular orbital terminology to label the energy levels are depicted
in figure 7. The 25 molecular orbitals labeled S, P, D, F and G corresponding to the
values 0, 1, 2, 3 and 4, respectively, for the spherical quantum number l are filled with
50 of the 60 π electrons of C60 leaving 10 electrons to occupy part of the H molecular
orbital, which is split by the icosahedral symmetry of C60 into a five-fold degenerate
hu HOMO, a three-fold degenerate lowest unoccupied t1u molecular orbital (LUMO),
and an additional three-fold degenerate level of slightly higher energy. In C60 the
ten H π-electrons fill exactly the fivefold hu level giving a closed-shell configuration
(figure 7).
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Figure 7. The spherical harmonic structure of the molecular orbital energy levels of C60. The 60 electrons
for neutral C60 are indicated by •. The additional 3 electrons of C3−

60 and the additional 6 electrons of
C3−

60 in the t1u molecular orbital are indicated by ♣ and by ♣+ ♠, respectively.

Electronic band theory based on the molecular orbital energy levels of C60 in
figure 7 provides a consistent explanation of the electrical properties of C60-derived
materials. Both neutral C60 (• in figure 7) and the hexaanion C6−

60 found in K6C60

(• + ♣ + ♠ in figure 7) exhibit semiconducting properties in accord with their closed
shell configurations whereas the trianion C3−

60 found in K3C60 (•+ ♣ in figure 7) has
a partially filled HOMO corresponding to a Fermi surface and leading to metallic
properties. The C3−

60 salts of relatively compact cations such as K+ are not only
metallic but exhibit superconductivity with Tc’s up to 18 K for K3C60 [62].

Tang et al. [68] have performed Hückel calculations on the first four members of
the C60n2 series (1 6 n 6 4) of spherical fullerenes of icosahedral symmetry. Their
calculations provide sets of molecular orbital energy parameters whose approximation
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by spherical harmonics can be analyzed. This provides some insight as to the rela-
tionship of the large icosahedrally symmetric structures of the C60n2 fullerenes to ideal
spheres.

The following general observations can be made from the calculations of Tang et
al. [68] concerning the distribution of the energy parameters of the bonding molecular
orbitals of the icosahedral C60n2 fullerenes (0 < n 6 4):

(1) The most positive eigenvalue is always exactly +3 in accord with the fact
that all vertices of any fullerene polyhedron has degree 3.

(2) Fullerene polyhedra are clearly not bipartite graphs because of the presence
of the 12 pentagonal faces. For this reason the eigenvalues of the corresponding
graph spectra cannot be grouped into ±xi pairs. Nevertheless, the C60n2 fullerenes
of icosahedral symmetry have equal numbers of bonding and antibonding orbitals as
well as a high HOMO/LUMO separation. For this reason neutral C60n2 fullerenes of
icosahedral symmetry are expected to be stable [3].

(3) There are five types of irreducible representations of the icosahedral rotation
group I , namely, A, T1, T2, G and H representations of degeneracies 1, 3, 3, 4 and 5,
respectively. Therefore the observed molecular orbitals exhibit these degeneracies
except for the much larger accidental degeneracies at the +1 eigenvalue of 9, 10, 9
and 30 for C60, C240, C540 and C960, respectively [68]. The HOMO and LUMO for
any of these C60n2 fullerenes of icosahedral symmetry are quintuply degenerate h and
triply degenerate t1 orbitals, respectively. The entire set of 60n2 molecular orbitals for
C60n2 can be partitioned into n2(a+ 3t1 + 3t2 + 4g+ 5h) sets so that the total number
of distinct energy levels is 16n2.

(4) From the most positive +3 eigenvalue to the highly degenerate +1 eigen-
value the molecular orbitals are clustered into groups of 1, 3, 5, 7, 9, . . . orbitals as
expected for the S, P, D, F, G, H, . . . spherical harmonics corresponding to L = 0,
1, 2, 3, 4, 5, . . . , respectively. Thus the lowest lying molecular orbitals (i.e., the
molecular orbital with a +3 eigenvalue) is always a non-degenerate a orbital (L = 0)
followed by triply degenerate t1 and quintuply degenerate h orbitals for L = 1 and 2,
respectively.

The lowest lying molecular orbitals of C60 (figure 7) are grouped into sets of
1, 3, 5 and 7 molecular orbitals of alternating parity g, u, g and u as expected for
S, P, D and F molecular orbitals derived from spherical harmonics with L = 0, 1,
2 and 3, respectively. Next at the +1 eigenvalue come the accidentally nine-fold
degenerate (gg + hg) G orbitals of the expected gerade (g) parity. These G orbitals
are followed by a group of 11 orbitals divided into an (hu + t1u + t1g) set which
are the frontier orbitals since they bracket the zero eigenvalue separating bonding and
non-bonding orbitals. Although the number of these orbitals is correct for the expected
11 H orbitals, the parities are wrong since all true H orbitals would be expected to be
ungerade. Thus the molecular orbitals of C60 are no longer adequately approximated
by spherical harmonics in the frontier orbital range.

Figure 8 depicts the bonding molecular orbitals of C240 as calculated by Tang et
al. [68]. These molecular orbitals are grouped into clusters of 1, 3, 5, 7, 9, 11, 13, 15



R.B. King / Symmetry and topology of carbon allotrope structures 211

Figure 8. The spherical harmonic structure of the bonding molecular orbital energy levels of C240.

and 17 orbitals as expected for molecular orbitals derived from spherical harmonics
with L 6 8. This pattern breaks down at and beyond the 10-fold degenerate +1
eigenvalue since immediately beyond the 17 orbitals with L = 8 it is not possible to
segregate a group of 19 orbitals for L = 9. This suggests that the spherical harmonic
approximation for the molecular orbitals of C240 breaks down for molecular orbitals
with eigenvalues +1 and beyond (i.e., below +1 since the lowest lying molecular
orbital is always at +3).

Similar methods can be used to analyze the molecular orbitals of the higher C60n2

fullerenes of icosahedral symmetry [36].
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3. Schwarzites: hypothetical negative curvature polymeric carbon allotropes

3.1. A proposed “fourth form of carbon”

Analysis of the structures of graphite and fullerenes suggests a fourth form of
elemental carbon based on networks of trigonal sp2 carbon atoms decorating surfaces
of negative rather than positive curvature. The negative curvature surfaces of inter-
est are called infinite periodic minimal surfaces (IPMS’s) and are expected to lead to
polymeric carbon allotropes having unusually low density. Since the relevant negative
curvature surfaces were first studied in detail by the mathematician H.A. Schwarz in
1880 [61], the trivial name schwarzite has been suggested for this still unknown form
of carbon [50]. The carbon rings on the negative curvature surfaces of schwarzite
structures are expected to include heptagons and/or octagons in addition to an indeter-
minate number of hexagons. The carbon heptagons and octagons introduce negative
curvature into the schwarzite surfaces.

Mackay and Terrones appear to have been the first to recognize the possibility
of negative curvature allotropes of carbon and in 1991 [52] they proposed the P192
schwarzite structure with a unit cell of 192 carbon atoms in a simple cubic structure
based on the IPMS called the P surface. Their proposed schwarzite structure was
quickly followed by the 216 atom unit cell P216 and D216 schwarzite structures of
Lenosky et al. [50] based on the P and D surfaces, respectively, and the 168 atom
unit cell D168 schwarzite structure of Vanderbilt and Tersoff [69] also based on the D
surface. Subsequently, schwarzite structures having only one type of carbon atom in
a 24-atom unit cell were studied by O’Keeffe et al. [57].

The smallest stable pure carbon fullerene structure is C60 (figure 2), which is the
smallest fullerene structure containing enough carbon hexagons so that no pair of the
12 pentagonal faces needs to share any edges. The higher stable fullerenes, namely, Cn
(n = 70 and higher even numbers), have a large number of carbon hexagons separating
the 12 pentagonal faces with C70 (figure 2) being the second smallest possible fullerene
obeying the IPR.

Similar ideas can be used to analyze possible schwarzite structures. For example,
Vanderbilt and Tersoff [69] construct their D168 schwarzite structure by giving each
carbon vertex a “perfect local topology” similar to that of the carbon vertices in the C60

fullerene. Thus in C60 each carbon vertex is shared by one pentagon and two hexagons,
each pentagon is surrounded by only hexagons, and each hexagon is surrounded by
alternating hexagons and pentagons. The D168 schwarzite structure of Vanderbilt
and Tersoff [69] has an analogous local carbon vertex topology with each vertex
being shared by one heptagon and two hexagons, each heptagon being surrounded
by only hexagons, and each hexagon being surrounded by alternating hexagons and
heptagons.

A striking feature of the C60 structure (figure 2) is its high symmetry based on
the icosahedral pure rotation group of order 60 (the I group), which is the largest fi-
nite three-dimensional rotation point group having relatively small order rotation axes.
If the concept of symmetry in carbon allotrope structures is broadened to include
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automorphism groups containing permutations other than standard symmetry opera-
tions, then the D168 schwarzite structure proposed by Vanderbilt and Tersoff [69]
can also be seen to have unusually high permutational symmetry with an automor-
phism group of order 168, conventionally designated as PSL(2,7) [35]. The PSL(2,7)
group in question has been known since the 19th century as a transitive permutation
group on either seven or eight objects just like the icosahedral rotation group is a
transitive permutation group on either five or six objects [23]. This analogy between
these unusual symmetries of the C60 fullerene and the D168 schwarzite suggests the
following [35]:

(1) The D168 schwarzite is the negative curvature analogue of the C60 fullerene.

(2) Schwarzites with larger unit cells (e.g., P192, D192 and P216) are analogues of C70

and higher fullerenes, which, in general, are less symmetrical than C60 and have a
larger number of hexagonal faces relative to the 12 pentagonal faces required by
topology.

3.2. Carbon networks on surfaces of non-zero genus

Consider a network of sp2 carbon atoms in which ν is the number of carbon
atoms (vertices), e is the number of carbon–carbon bonds (edges), and f is the num-
ber of carbon rings (faces) embedded into a surface of genus g, namely, a surface
homeomorphic to a sphere with g handles [53]. Thus a sphere has genus 0 and a torus
or a coffee cup with a handle has genus 1. A generalized version of Euler’s theorem
can then be written as

ν − e+ f = 2− 2g = χ, (14)

where χ is the Euler characteristic. Now consider a network of sp2 carbon atoms
containing only hexagons and heptagons so that

2e = 3ν = 6f6 + 7f7. (15)

Substituting this into Euler’s equation gives

−f7 = 12(1 − g) = 6χ. (16)

The solutions to this equation of lowest genus are f7 = 12 for g = 2 or χ = −2, and
f7 = 24 for g = 3 or χ = −4. The latter solution is the basis of the prototypical D168
schwarzite structure [69] analogous to the C60 fullerene structure. The D168 structure
is obtained by subjecting a fundamental structural unit of 24 heptagons embedded
in a surface of genus 3 to a leapfrog transformation (figure 5). Such a unit of 24
heptagons has 24(7/3) = 56 vertices since each heptagon has seven vertices and each
vertex is shared by three heptagons. Applying the leapfrog transformation triples the
56 vertices of the fundamental structural unit to give the 168 vertices of the D168 unit
cell.
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3.3. Infinite minimal periodic surfaces for negative curvature carbon allotropes

The above analysis suggests that the unit cell of the prototypical D168 schwarzite
structure can be generated by embedding 24 heptagons on a surface of genus 3. Suitable
surfaces of genus 3 turn out to be infinite minimal surfaces with negative Gaussian
curvature [1]. Thus, consider a curved surface, such as one formed by a network of
sp2-hybridized carbon atoms. At each point such a curved surface has two principal
curvatures k1 and k2. The mean curvature H and the Gaussian curvature K are defined
as follows:

H =
1
2

(k1 + k2), (17a)

K = k1k2. (17b)

A spherical or ellipsoidal shell has positive Gaussian curvature (i.e., it is “convex”), a
hyperbolic sheet has negative Gaussian curvature (i.e., it is “concave”), and a cylinder
or cone has zero Gaussian curvature. Minimal surfaces are surfaces where the mean
curvature H at each point is zero so that k1 = −k2 by equation (17a) and K 6 0
by equation (17b). They are thus saddle-shaped everywhere except at certain “flat
points” which are higher order saddles. The simplest example of a (non-periodic)
minimal surface excluding the trivial case of the plane is defined by the following
cubic equation:

F (x, y) = z = x
(
x2 − 3y2). (18)

This surface (figure 9(a)) is called the monkey saddle [27], since it has three depres-
sions, namely two for the monkey’s legs and one for his tail. The average curvature
of the monkey saddle vanishes at every point so that at every point its “concavity” is
equal to its “convexity”.

It is not possible to construct an infinite surface with a constant negative Gaussian
curvature. However, Schwarz found before 1865 that patches of varying negative cur-
vature and constant zero mean curvature could be smoothly joined to give an infinite
surface with zero mean curvature which is periodic in all three directions. Such
surfaces are called infinite periodic minimal surfaces (IPMS’s). About five differ-
ent types of IPMS’s were known by 1880 [56] and the number of known distinct
IPMS’s is now more than 50 [16]. The original five IPMS’s have been given the
designations P, D, T, H and CLP and have been depicted as polyhedral wire models
dipped into soap solutions which correspond to their unit cells (table 2) [1]. These
IPMS’s can be constructed using monkey saddles (figure 9(a)) as basic building blocks
so that the single flat point of each monkey saddle is located at a vertex of the poly-
hedral unit cell.

The IPMS’s described above cannot be defined by analytic functions in the usual
Cartesian space of three dimensions but instead requires elliptic or hyperelliptic inte-
grals, which must be solved numerically [1]. The finite surface element building block
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(a)

(b)

Figure 9. (a) The monkey saddle as defined by equation (18); (b) The Riemann sphere and the projection
of a point P ′(x′, y′, z′) on the Riemann sphere to a point P ′′(σ, τ ) in the complex plane.

Table 2
Polyhedral unit cells for the five classical minimal surfaces.

Surface Genus Polyhedron Symmetry Number of edges

P 3 Octahedron Oh 6 out of 12
D 3 Tetrahedron Td 4 out of 6
T 3 Cube Oh 8 out of 12

CLP 3 Trigonal prism D3h

H 3 Triangle D3h 3 out of 3
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which is repeated periodically throughout space in an IPMS plays a role analogous to
the unit cell in a crystal structure. Hyde and collaborators have exploited this analogy
to describe crystal structures using IPMS’s [1,2,28–31].

The description of IPMS’s using elliptic or hyperelliptic integrals is facilitated
by the fact that minimal surfaces are the only surfaces other than the sphere whose
spherical representation is conformal. This means that every complex analytic function
can be used to describe a minimal surface. In order to generate such a description,
each point P (x, y, z) of the surface is mapped onto a point P ′(x′, y′, z′) on the unit
sphere given by

P ′(x′, y′, z′) =
(dF/dx, dF/dy, dF/dz)√

(dF/dx)2 + (dF/dy)2 + (dF/dz)2
. (19)

The same sphere, taken as a special unit sphere called the Riemann sphere, can also
be used to represent the complex numbers ω = σ+ iτ by points on the (σ, τ ) complex
plane (figure 9(b)). The complex plane can correspond to the equatorial plane of the
Riemann sphere (figure 9(b)) in which the north pole is ∞ and the south pole is 0;
the 0−∞ axis can be called the polar axis [40]. In this way the point P ′(x′, y′, z′)
on the Riemann sphere can be projected to the point P ′′(σ, τ ) on the complex plane
(figure 9(b)). Weierstrass showed in the 19th century that the Cartesian coordinates of
a point P (x, y, z) on an IPMS are related to the coordinates P ′′(σ, τ ) on the complex
plane by the integrals

x = Re
∫ (

1− ω2)R(ω) dω, (20a)

y = − Im
∫ (

1 + ω2)R(ω) dω, (20b)

z = Re
∫

2ωR(ω) dω, (20c)

in which Re and Im denote the real and imaginary parts of the complex integral and
ω = σ + iτ as above.

The Weierstrass function R(ω) determines the intrinsic parameters of the surface.
For example, the Gaussian curvature is related to R(ω) by the following equation:

K =
−4

(1 + |ω|2)4|R(ω)|2 . (21)

The general form of the Weierstrass function can be expressed as

R(ω) =
1

(F (ω))1/b
=

1∏k
i=1(ω − ωi)1/b

, (22)

in which k = 8 and b = 2 for the IPMS’s of greatest interest. The integrals in
equations (20) are hyperelliptic integrals if b = 2 in equation (22) and the degree of
the polynomial F (ω) is greater than four. The values of the roots ωi of the polynomial
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F (ω) correspond to the locations of the singular flat points of the monkey saddles
making up the IPMS.

Table 2 lists the five classical IPMS’s. Among these five IPMS’s, two of them,
namely the D and P surfaces, have the same Weierstrass function, namely,

R(ω) =
1√

1− 14ω4 + ω8
. (23)

The integrals (equations (20)) determining the coordinates of these surfaces are hy-
perelliptic integrals since the degree of the polynomial in ω under the radical sign in
equation (23) is greater than four. Furthermore, the locations of the eight roots of the
degree 8 polynomial in the denominator of equation (23) correspond to the vertices of
a cube inscribed in the Riemann sphere in accord with the cubic symmetry of the unit
cell of the D and P surfaces. Polynomials of this type, which vanish at the vertices of a
regular polyhedron inscribed in the Riemann sphere, are called polyhedral polynomials
and have been studied for the regular polyhedra, particularly in connection with the
solution of the general quintic equation using elliptic functions [12,33,37,40].

The transformation, defined by the coordinates

x = Re
∫

eiθ(1− ω2)R(ω) dω, (24a)

y = − Im
∫

eiθ(1 + ω2)R(ω) dω, (24b)

z = Re
∫

eiθ2ωR(ω) dω, (24c)

is used to relate IPMS’s which have the same Weierstrass function R(ω). This trans-
formation is called a Bonnet transformation and the angle θ is called the association
parameter. Surfaces related by a Bonnet transformation are called associate surfaces.
All associate surfaces have the same metrics so that lengths are preserved during any
Bonnet transformation. Thus a Bonnet transformation only bends the surface without
stretching. The P and D surfaces are special cases of associate surfaces since the
Bonnet transformations converting either the P to the D surface or vice versa both
have θ = π/2. Surfaces related by Bonnet transformations having θ = π/2 are called
adjoint surfaces.

The use of IPMS’s to construct possible schwarzite structures by decorating them
with networks of sp2 carbon atoms requires consideration of their genus. In this con-
nection all of the classical IPMS’s (table 2), including the P and D surfaces suggested
for schwarzite structures, are found to have unit cells with genus 3. The unit cell of
the P surface is depicted in two different ways in figure 10. Thus it can be viewed as an
octahedral junction of six pipes or tubes that has been called a “plumber’s nightmare”
(figure 10(a)) or equivalently as three hyperboloids whose axes meet at right angles
(figure 10(b)). Connecting the open pipes emerging from each of the three pairs of
cis (i.e., adjacent) faces of the plumber’s nightmare (figure 10(a)) thereby generating
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(a) (b)

Figure 10. Two descriptions of the unit cell of the P surface: (a) A “plumber’s nightmare” intersection
of six pipes coming through the faces of a cube to meet at an octahedral junction; (b) Three hyperboloids

whose axes intersect at right angles.

a closed surface leads to a sphere with three handles thereby indicating that a unit cell
of this surface has genus 3.

3.4. Decorating infinite periodic minimal surfaces with networks of sp2 carbon
atoms

The above analysis suggests that the unit cell of the D168 schwarzite structure
can be generated by decorating the unit cell of a D surface of genus 3 with 24 hep-
tagons followed by a leapfrog transformation (figure 5) similar to the generation of the
C60 fullerene structure by decorating a sphere with 12 pentagons to give the regular
dodecahedron followed by an analogous leapfrog transformation. The D surface as
well as the adjoint P surface decorated with 24 heptagons can be obtained from a figure
described by the famous 19th century German mathematician F. Klein in an 1879 pa-
per [39,41]. Figure 11, which is adapted from a figure in the 1879 Klein paper, depicts
schematically an open network consisting only of full heptagons or portions thereof
which can be folded to decorate a genus 3 negative curvature surface, such as a unit
cell of the D or P surfaces, in the most symmetrical manner with 24 heptagons. The
seven-fold symmetry (i.e., a C7 axis) of the unfolded Klein figure (figure 11) is clearly
evident in a “central” heptagon (heptagon 1) surrounded by seven additional heptagons
(heptagons 2–8). An “outer group” of an additional seven heptagons (heptagons 9–15)
preserves the seven-fold symmetry of this open network.

The open network of heptagons as depicted in figure 11 contains 14 outer edges,
which appear as arcs because of the negative curvature of the surface. These outer
edges are labeled in pairs by the letters A–G. Joining the seven pairs of outer edges
labeled by the same letters generates the genus 3 surface which is topologically home-
omorphic to a unit cell of the P surface and completes the remaining nine of the total of
24 heptagons by joining their pieces found in regions which are separated in the orig-
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Figure 11. The figure of 24 heptagons described by Klein in his 1879 paper. All but two of the heptagons
are numbered (1–22). Pairs of outer edges to be joined to form a genus 3 surfaces are indicated by the

letters A–G.

inal open network (figure 11). Thus, heptagons 16–22 are generated by joining their
halves whereas heptagons 23 and 24 (not labeled in figure 11) are each obtained by
joining seven of the pieces which are the 14 “points” of the open network in figure 11
not allocated to heptagons (heptagons 1–15) or heptagon halves (heptagons 16–22).
Converting the open network in figure 11 to a genus 3 surface by joining the pairs
of outer edges AA through GG destroys the seven-fold rotation axis in the symmetry
point group of the resulting surface but in the most symmetrical presentation increases
the remaining symmetry to the octahedral symmetry of the cubic unit cell of the P
surface.

Klein in his 1879 paper [39,41] also considers the most symmetrical presentation
of the genus 3 figure of 24 heptagons. A cubic unit cell of the P surface (e.g., fig-
ure 10(a)) can be decomposed into eight hyperbolic triangular regions corresponding
to the eight vertices of the cube. These regions may also be considered to be the eight
(curved triangular) faces of a regular hyperbolic octahedron dual to the cubic unit cell.
Each face contains 24/8 = 3 of the 24 heptagons with the vertices common to the
eight triplets of heptagons corresponding to the eight vertices of the underlying cube.
One of these triplets of heptagons is depicted in figure 12. Each heptagon is divided
into seven shaded and seven unshaded triangles for clarity. This decoration of a unit
cell of the P surface with 24 heptagons has 7× 24/2 = 84 edges and 7× 24/3 = 56
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Figure 12. A triplet of heptagons contained in a hyperbolic triangular region corresponding to a face of
the octahedron dual to the cube in the unit cell of the P surface. For clarity, each heptagon is divided

into seven shaded and seven unshaded triangles.

vertices and thus has an Euler characteristic (equation (14)) of 56 − 84 + 24 = −4
corresponding to genus 3. A hypothetical carbon allotrope based on this structure
using the D surface, which is adjoint to the P surface, is conveniently called a D56
protoschwarzite since it has a C56 unit cell.

This D56 protoschwarzite structure can be converted to the D168 schwarzite
structure by a leapfrog transformation (figure 5) which has the following effects:

(1) The number of vertices is increased by a factor of three giving the 3× 56 = 168
vertices in the unit cell of the D168 structure.

(2) The carbon heptagons are separated by the minimum number of hexagons so that
no two carbon heptagons share an edge thereby eliminating unfavorable heptalene
units.

(3) The symmetry and the genus of the surface are preserved.

Table 3 compares the effects of the leapfrog transformation on the dodecahedral C20

fullerene and on the D56 protoschwarzite. The products of both leapfrog transforma-
tions, namely the C60 fullerene and the D168 schwarzite, have the following features
in common:

(1) The numbers of vertices (ν) and of edges (e) belonging to non-hexagonal faces
(f 6=6 + f6 edges in table 3) are equal (60 in the case of C60 and 168 in the case of
D168).
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Table 3
A comparison of leapfrog transformations on the C20 fullerene and the

D56 protoschwarzite.

C20
leapfrog−→ C60 D56

leapfrog−→ D168

Vertices 20 60 56 168
Edges 30 90 84 252
Faces 12 32 24 80
f6=6 12 12 24 24
f6 0 20 0 56
f6=6 + f6=6 edges 30 0 84 0
f6=6 + f6 edges 0 60 0 168
f6 + f6 edges 0 30 0 84

Figure 13. Placement of carbon hexagons and heptagons on a section of the P surface in the schwarzite
P216.

(2) The number of edges belonging to non-hexagonal faces (f 6=6 +f6 edges in table 3)
is twice the number of edges belonging exclusively to hexagonal faces (f6 + f6

edges in table 3).

These features suggest that the C60 and D168 structures both represent the minimum
“dilutions” of non-hexagons with hexagons so that no pair of non-hexagons has any
edges in common. For this reason C60 is the smallest stable fullerene. Similarly, D168
has the smallest schwarzite unit cell containing only hexagons and heptagons with no
pair of heptagons having an edge in common.

Schwarzites have been suggested having unit cells with more than the minimum
of 56 hexagons needed to dilute the 24 heptagons in the unit cell of a genus 3 IPMS so
that no pair of heptagons has an edge in common. For example, schwarzite structures
have been proposed based on the P surface with a unit cell having 216 carbon atoms,
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80 hexagons, and the required 24 heptagons (figure 13) [50]. This is the schwarzite
analogue of a C70 or larger fullerene having more than the minimum of 20 hexagons
needed to dilute the 12 pentagons on a sphere so that no pair of pentagons has an edge
in common.

Schwarzites have also been proposed in which the carbon rings larger than
hexagons are octagons rather than heptagons. A schwarzite with only hexagonal and
octagonal carbon rings based on an IPMS with a unit cell of genus 3 such as the P
or D surface requires 12 octagons per unit cell. In this connection MacKay and Ter-
rones [52] have proposed a schwarzite structure with a unit cell containing 192 carbon
atoms, 80 hexagons and the required 12 octagons (table 2).

3.5. The hidden permutational symmetry of carbon allotrope structures

The structure of the C60 fullerene is characterized by unusually high symmetry,
namely, icosahedral symmetry (i.e., the icosahedral point group Ih or its proper rotation
subgroup I), which contains C5, C3 and C2 proper rotation axes. A question of interest
is whether the D168 schwarzite likewise has special symmetry. The cubic unit cell
of D168 has Oh symmetry, which contains C4, C3 and C2 axes. However, the open
network of 24 heptagons (figure 11) from which the D168 structure is generated also
contains a C7 axis, which is lost from the symmetry point group when the open network
is folded to a genus 3 surface by joining the outer edge pairs AA through GG. In
mathematical terms [6] the open network of 24 heptagons is called a regular map,
M , which is folded into a polyhedral embedding or a polyhedral realization, P , in a
genus 3 surface. The C7 symmetry which is “lost” when the open map (figure 11) is
folded into the polyhedral embedding is called the hidden symmetry of the resulting
polyhedral embedding [6]. This section considers a way that the C7 symmetry element
of the open 24 heptagon network can be “remembered” when the network is folded
into a genus 3 surface. In order to consider the C7 symmetry elements in the final
D168 schwarzite structure, its symmetry must be considered as a permutation group
of which its actual symmetry point group is a subgroup.

The description of the permutational symmetries of carbon allotrope structures
requires an alternative definition of the icosahedral pure rotation group, which can be
extended to larger simple permutation groups which do not occur as symmetry point
groups [45]. Thus consider a prime number p and let Fp denote the finite field of p
elements which can be represented by the p integers 0, . . . , p−1; larger integers can be
converted to an element in this finite field by dividing by p and taking the remainder
(i.e., the number is taken “mod p”). For example, the finite field F5 contains the five
elements represented by the integers 0, 1, 2, 3 and 4, and other integers are converted
to one of these five integers by dividing by 5 and taking the remainder, e.g., 6 → 1
in F5 (written frequently as “6 ≡ 1 mod 5”). The group SL(2, p) is defined to be the
group of all 2× 2 matrices with entries in Fp having determinant 1 and its subgroup
PSL(2, p) for odd p is defined to be the quotient group of SL(2, p) modulo its center,
where the center of a group is the largest normal subgroup that is Abelian. In the case
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of the groups SL(2, p), where p > 5, the center has only two elements and the quotient
group PSL(2, p) is a simple group. In this context a simple group is a group having
no normal subgroups other than the identity group C1, where a normal subgroup N
of a group G is a subgroup which consists only of entire conjugacy classes of G.
The group PSL(2, 5) contains 60 elements and is isomorphic to the icosahedral pure
rotation group I .

An important property of the PSL(2, p) permutation groups (table 4) for p = 5, 7
and 11 is that they can function as transitive permutation groups on sets of either p or
p + 1 objects. In the case of the group PSL(2, 5) these transitive permutation groups
on 5 and 6 objects can be visualized as permutations of parts of an icosahedron since
PSL(2, 5) is isomorphic to the icosahedral pure rotation group. Thus the PSL(2, 5)
group acts as a transitive permutation group on the six diameters of a regular icosa-
hedron, where a diameter of an icosahedron is defined as a line drawn between a pair
of antipodal vertices. In order to obtain in an icosahedron a set of five objects that
is permuted transitively by the PSL(2, 5) group, the 30 edges of an icosahedron are
partitioned into five sets of six edges each by the following method [40]:

(1) A straight line is drawn from the midpoint of each edge through the center of the
icosahedron to the midpoint of the opposite edge.

(2) The resulting 15 straight lines are divided into five sets of three mutually perpen-
dicular straight lines.

Each of these five sets of three mutually perpendicular straight lines resembles a set
of Cartesian coordinates and defines a regular octahedron. The PSL(2, 5) permutation
group as manifested in its isomorphic I symmetry point group functions as a transitive
permutation group on these five sets of three mutually perpendicular straight lines. In
fact the PSL(2, 5) permutation group is also isomorphic with the so-called alternating
permutation group on five objects [38], namely, A5, where an alternating permutation
group on n objects is the set of all possible even permutations and is of order n!/2.

The next higher group in the PSL(2, p) series (table 4), namely, the PSL(2, 7)
group of order 168, is important in understanding the permutational symmetry of the
D168 schwarzite. In fact, the prototypical roles of C60 in the fullerene series and
D168 in the schwarzite series relate to the fact that the number of carbon atoms in
their fundamental building blocks are equal to the orders of the corresponding transitive
permutation groups. Figure 14 depicts two geometrical models of the PSL(2, 7) group
which reflect its dual functions as transitive permutation groups of degrees 7 and 8:

Table 4
Properties of the PSL(2, p) groups (p = 5, 7, 11).

Group Order Conjugacy classes Polyhedral
subgroup

PSL(2, 5) 60 E + 12C5 + 12C2
5 + 20C3 + 15C2 T

PSL(2, 7) 168 E + 24C7 + 24C3
7 + 56C3 + 21C2 + 42C4 O

PSL(2, 11) 660 E + 60C11 + 60C2
11 + 110C3 + 55C2 + 132C5 + 132C2

5 + 110C4 I
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(a) D3 7-point 7-line geometry (b) D2 cuboid 8 points

Figure 14. Geometrical models of the PSL(2, 7) group as permutation groups on 7 and 8 points.

Degree 7 (figure 14(a)): An equilateral triangle with its three altitudes and an
inscribed circle forms a 7-point 7-line geometry presented in D3 symmetry. The
permutations of the seven vertex labels which preserve the seven collineations (152,
263, 173, 146, 247, 345, 567) form the PSL(2, 7) group. Note that in this presentation
the inscribed circle is treated on an equal basis with the six straight lines forming the
three edges and the three altitudes of the triangle.

Degree 8 (figure 14(b)): The permutations of the eight vertex labels of a cuboid
(rectangular “box”) of D2 point group symmetry (including the identity permutation)
which give a set of 168 non-superimposable cuboids form the PSL(2, 7) group.

The PSL(2, p) (p = 5, 7, 11) groups are simple groups and thus have no non-trivial
normal subgroups. However, they contain two different sets of n smaller subgroups
corresponding to pure rotation groups of regular polyhedra (table 4); these regular
polyhedral rotation groups are subgroups of index p of the groups PSL(2, p). However,
the PSL(2, 11) group has been proven to the largest group of the general type PSL(2, p)
with p a prime which has a subgroup of index p [45]. A corollary derived from this
theorem is that if p > 11, the PSL(2, p) group cannot be a transitive permutation group
for a set with fewer than p + 1 elements in contrast to the PSL(2, p) (p = 5, 7, 11)
groups which can be transitive permutation groups for sets of p elements, namely, 5,
7 and 11, respectively.

The simplest example of the polyhedral subgroups of index p in the PSL(2, p)
groups occurs in the icosahedral group PSL(2, 5), which can be decomposed into two
different sets of five tetrahedra corresponding to the conjugacy classes 12C5 and 12C2

5.
This is related to the partitioning of the 20 vertices of a regular dodecahedron into five
sets of four vertices each corresponding to a regular tetrahedron (figure 15) [38]. The
permutations of the group PSL(2, 5) act as the icosahedral pure rotation group I on the
regular dodecahedron partitioned in this manner and correspondingly as the alternating
group A5 on the five subtetrahedra depicted in figure 15.

The next higher permutation group PSL(2, 7) of order 168 is highly relevant
to understanding the structure and symmetry of the schwarzite D168. This group
can be decomposed into two sets of seven octahedral subgroups corresponding to its
conjugacy classes 24C7 and 24C3

7 (table 4). This relates to the embedding of the open
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Figure 15. Partitioning the 20 vertices of a regular dodecahedron into five sets of four vertices (A–E)
each corresponding to a regular tetrahedron. The six edges of tetrahedron A are indicated by dotted lines.

network (i.e., the Klein map) [33,39,41] of 24 heptagons (figure 11) into the unit cell
of a P or D surface of genus 3 having a unit cell of octahedral symmetry such as the
“plumber’s nightmare” (figure 10). The automorphism of the Klein map (figure 11) is
the PSL(2, 7) group of order 168 which thus remains the automorphism group of its
embedding into the D surface in D168. The symmetry group of the pure rotations of
the D168 unit cell is the octahedral rotation group O, which, as noted above and in
table 4, is a subgroup of index 7 in PSL(2, 7). Thus the D168 schwarzite structure can
be seen to have seven-fold (C7) hidden symmetry.

The next higher permutation group of this type, namely PSL(2, 11) of order 660,
turns out to be relevant to understanding some aspects of the symmetry of the truncated
icosahedral C60 fullerene structure as discussed in detail in recent papers by Kostant
and collaborators [8,44,45]. The PSL(2, 11) group can be decomposed into two sets
of 11 icosahedral subgroups corresponding to its conjugacy classes 60C11 and 60C2

11
(table 4). In the C60 structure the PSL(2, 11) group acts transitively as a permutation
group on the 60 vertices and the 60 edges of the 12 pentagonal faces (f 6=6 + f6 edges
in table 3). However, the PSL(2, 11) group no longer preserves the 30 edges between
two hexagonal faces (f6 + f6 edges in table 3) and therefore is not an automorphism
group of C60.
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